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Uncertainty Estimation: Overview 



● Quantitative information applied to inversion 
independent of measured data  

 
● Explicit:  

 Parameter bounds (bounded  
    uniform distribution) 
 Non-uniform prior distributions 

 Inter-parameter relationships  

● Implicit: 
 Physics models and  
    parameterizations considered 
     

1.  Prior Information 

Hamilton data 



● Prior information (particularly parameterization, 
hard bounds) can strongly influence solution  
 Important to specify priors in comparing uncertainty 

results 
 
● Common goal:  

 Constrain parameters to physically-reasonable values 

 Allow data information to primarily determine solution  

● If data and prior disagree: 
 Reassess data and error estimates 
 Reassess prior, including physics model and 

parameterization 
     

Prior Information 



 
● Physics model 

 Fluid, elastic or poro-elastic? 
 Range independent/dependent? 
 Plane wave or spherical wave? 

 

● Model parameterization 
 Number of                                                           

layers/segments? 

2.  Model Selection 

n layers—best  choice of n? 



 
● Quantitative uncertainty estimation requires 

appropriate model parameterization 

 Under-parameterization can lead to under-fitting  
    data, biased parameter estimates, under-estimated  
    uncertainties 

 Over-parameterization can lead to over-fitting data,  

    unconstrained structure, over-estimated uncertainties 
 

● Seek simplest parameterization consistent           
with resolving power of the data 

Model Selection 



 
● Qualitative Model Selection:   

 Based on insight and experience 
 

● Quantitative Model Selection:   
 Bayesian information criterion (BIC)—point  

estimate based on optimization that balances                    
data fit and number of parameters   

 Evidence—Integral estimate of parameterization 
likelihood given the data, based on sampling 
 

 Trans-dimensional inversion   
 

 Multiple-model particle filter   
  

Model Selection 

Include number of  
parameters as unknown 
in inversion 



Example: BIC 

● Invert Scholte (interface) wave dispersion                
curves from ambient noise 
 Invert fundamental mode only   
 Invert first 3 modes 

 
 

 

Frequency (Hz) 



BIC: 1 & 3 Mode Inversions  

1 mode: 5 layers resolved 3 modes: 8 layers resolved 



MAP Profiles  



Marginal Probability Profiles 

1 mode 3 modes 



Trans-D Reflection Inversion   



 
● Misfit quantifies difference between measured 

and modeled data  

● Parameter estimation (optimization): 
 Minimize any reasonable misfit function; result is  
    corresponding best-fit model according  
 Likelihood-based misfit provides efficient estimator 

 
● Uncertainty estimation: 

 Generally requires likelihood-based misfit 
 Maxent methods can specify least-informative 
    misfit function for a given constraint  

3. Data Misfit Function 



Likelihood Function 
 
● Likelihood:  Interprets data uncertainty  
    distribution as a function of model parameters 

 Consistent with inversion as mapping data uncertainty 
distribution (data space) to parameter uncertainty    
distribution (model space)   
 

● Requires estimating data uncertainties 
(measurement and theory errors) 
 Form of distribution (Gaussian, Laplace, …)   
 Statistical properties (variance, covariance) estimated   

from data residuals or included as unknowns in inversion  
 



Examples 
 

● IID Gaussian data errors 

 

 

● IID Gaussian errors, unknown source strength 
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● Specifying likelihood requires quantifying the data 

error distribution 
 

● Data errors = Inability to model measured data: 
 Measurement errors: ambient noise, instrumental 

uncertainties, etc.   
 Theory errors: due to idealized physics and 
    simplified parameterization, etc. 
 

● Ensure modeling is as accurate as possible and 
data sample over error processes (difficult) 
 Sample over noise, internal waves, variability, etc. 
 Collect multiple data sets (same & different types)  
 Note: beyond a point, denser data lead to correlated errors 
  

Data Errors 



4.  Parameter Estimation  

● Minimize data misfit                                                            
via optimization  
 Linearized inversion  
    (prone to local minima) 
 Global search 
 Hybrid optimization 

 Repeat optimization 
    to ensure stable result 

 
 Mean model via                                                       

sampling 



5.  Uncertainty Estimation  

● Linearization—Analytic result  
    (exact solution to approximate problem) 

 Gaussian data uncertainties and unbounded-uniform or 
Gaussian prior leads to Gaussian parameter uncertainties 

 Efficient, potentially inaccurate  

● Nonlinear—Numerical sampling  
    (approx solution to exact problem) 

 Monte Carlo/Importance sampling 
 Markov-chain Monte Carlo                                                 

(Metropolis Hastings, Gibbs sampling) 
 Parallel-tempering 
 Numerically intensive; sampling/convergence issues 



Joint Uncertainties—Reverb 
nonlinear                        linearized 



Joint Uncertainties—Reflection 
nonlinear                        linearized 



Uncertainties—Reverb/Scattering  



 
● Uncertainty 

estimation for 
simulations 
quantifies ideal 
sensitivity and 
can help plan 
experiment 
factors 

 

Experiment Planning: Simulation 

Example: Frequencies in MFI 



 Variability   
 Measure of inherent spatial or temporal heterogeneity 

in an environmental property  
 Ideally quantified statistically/probabilistically  
 Intrinsic property of the environment—cannot be 

reduced by improved experiment or data analysis, 
although these can improve variability estimates   
 

● Uncertainty 
 Measure of knowledge of an environmental parameter 

 
 Ideally quantified statistically/probabilistically  
 Property of environmental knowledge, not of the 

environment itself—can be reduced by improved 
experiments or data analysis 

6.  Variability & Uncertainty 



 Inversion uncertainties quantify accuracy of the 
model parameter estimates adopted to 
represent the environment    

● Consider a parameter (e.g., sound speed of 
upper layer) over an experimental footprint  
 Uncertainty quantifies accuracy of average sound 

speed over footprint  
 Uncertainty does not quantify sound-speed variability 

over footprint (accurate average could be obtained for 
a highly variable property)  

 Parameter estimates involve non-uniform averaging   
so care required in interpretation  

Variability & Uncertainty 



   
● Variability & Uncertainty are distinct but related   

 Variability can cause theory/modeling errors which 
lead to parameter uncertainties  

 If theory errors due to variability dominate and are 
adequately sampled, uncertainty estimates can 
quantify variability (care required)   
  

Variability & Uncertainty 



   
● Variability study:     

 Localized, high-resolution measurements closely 
spaced in space or time   

 Significant differences between recovered parameters 
represent variability  

 Uncertainty estimation essential to determine if 
observed differences due to environmental      
variability or uncertain parameter estimates   
  

Variability & Uncertainty 



Sequential Trans-D Inversion  

 AUV-towed source and array: 
 Reflection data for small seafloor footprint 
 Mobile system for sub-bottom mapping 
 Reduces effects of seabed/ocean variability  



Sequential Trans-D Inversion  



 
● Joint (simultaneous) inversion of different data 

brings more information to bear  
 

● Different physics for different data can overcome  
 Low sensitivity to some parameters  

 Inter-parameter correlations 
  

  

7. Joint Inversion 



● Invert (separately and jointly): 
● Short-range propagation data 
● Reverb data 

 
 

Example: Reverb/Prop Inversion 
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Reverb Inversion—Joint Marginals 
 
 

● Strong inter- 
parameter 
correlations 
from reverb 
physics 



 
 

 

Propagation—Joint Marginals 
 
 

● Different 
parameter 
correlations 
arise from 
different 
physics 



 
 

 

Reverb + Propagation Inversion 
 
 

● Geoacoustics 
& scattering 
well resolved  



Inversion Comparison 

Reverb 
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Prop 
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