Characterizing Geo-acoustical Properties of the New England Mud Patch

Allen Reed Seafloor Sciences Branch Naval Research Laboratory Stennis Space Center MS 39520

Ice Extent and Mud Patch

Continental Shelf Deposit

http://www.nefsc.noaa.gov/ecosys/ecology/PhysicalSetting/

Age of Mud – "Recent" (up to 10,000 years before present)

8 February 2016

ONR Seabed Characterization Experiment 2016 fro

from Bothner et al. JSP, 1981

Mud Patch Variability

Trawling Surficial Sediment Textures

Mud Patch Variability

Heterogeneity

Physical Properties

- density
- porosity
- strata sand lenses/layers
- clay mineralogy/concentration
- grain size

Surface Roughness

- smooth or planar
- trawled
- burrowed
- rippled or scoured sandbed
- mud-sand interfaces

Internal Factors

- sediment strata
- burrows, shells
- gas bubbles

Multi-pronged Coring Approach

Vibracorer

Multi-Corer

Box Corer

8 February 2016

ONR Seabed Characterization Experiment 2016

Vibracoring

Core Analysis

Deepest Penetration (meters) Mud thickness & depth to sand Sand lenses within mud Mud-sand cores or sand cores

Physical Properties

- density
- sound speed
- porosity
- magnetic susceptibility
- strata sand lenses/layers
- grain size

Mineralogy

Geochronology or sediment age

Multi-Corer

Core Analysis

Shallow Penetration (~0.5 m)

Physical Properties

- density, P-wave velocity, porosity
- magnetic susceptibility
- strata sand lenses/layers
- grain size

Geotechnical Properties

• shear strength, bearing strength

Discrete Scatterers

• burrows, shells, gas bubbles

Surface Roughness (to some extent)

burrows, ripples, trawl marks (sidescan needed)

Mineralogy, clay fabric ("House of Cards")

Box Coring

Core Analysis Shallow Penetration (0.4 m)

Physical Properties

- Density
- P-wave velocity
- Porosity

Primary Purpose of Collection

Laboratory Based Mud Studies (reconstituted mud)

- Shear wave velocity
- Scholte wave study
- Other interests?

GeoTek Multi-Sensor Core Logger

Physical Properties (During Cruise and on board ship)

- P-wave velocity (green-blue transducers)
- Density (Gamma attenuation)
- Porosity (Resistivity)
- strata sand lenses/layers (Magnetic susceptibility)

Grain size (Laboratory analysis)

GeoTek Multi-Sensor Core Logger

Gamma Density P-wave Velocity (g/cc) (m/s)

5.5

Magnetic Susceptibility Porositv

3

Geotechnical Measurements

Penetrometer Tests (in situ)

Shear Vane (in lab)

8 February 2016

ONR Seabed Characterization Experiment 2016

Presence of Gas Bubbles, Sand Layers, Shells, Burrows

Comments?

Potential Personnel

- NRL Seafloor Sciences Branch
- USNA Dept. of Oceanography
- UMASS-Amherst geotechnical engineering
- Texas A&M Dept. of Oceanography
- U. Delaware
- Coring Company Government Contracting
- Clay mineralogist or clay technician

Rivers? Transgressive Ravinement?

RV Sharp

8 February 2016

2016

R/V HUGH R. SHARP University of Delaware 2014

GENERAL DESCRIPTION:

The R/V HUGH R. SHARP is an acoustically quiet, state of the art, general-purpose coastal research vessel operated by the University of Delaware as part of the University-National Oceanographic Laboratory System (UNOLS) fleet. The ship's normal operating area is the Delaware and Chesapeake Bays and adjacent coastal waters out to 200 nautical miles. However, work is periodically conducted as far north as the Gulf of Maine, as far south as the Gulf of Mexico and as far offshore as Bermuda. The vessel is outfitted with a full range of oceanographic equipment and instrumentation as listed below, all of which are available for use when the vessel is chartered. The Sharp is designed to meet ICES 209 sound emission standards and has an acoustically quiet mode as well as Sound Guards self monitoring hydrophones.

COMMUNICATIONS:

Voice, FAX, and Internet/e-mail via: INMARSAT Fleet-55 and cellular, Fleet Broadband, Marine VHF and GMDSS compliant

MANEUVERING AND POSITIONING

Kongsberg Green DP System, Twin Shottel Z-Drives, Tunnel Bow Thruster

ELECTRICAL POWER:

480 Vac (3Φ) , 208 Vac $(1\Phi \text{ and } 3\Phi)$

SCIENCE HANDLING EQUIPMENT:

Starboard Trawl Winch: DYNACON, 3000m of ½", torque balanced wire rope. Auto-render, 20,000 LBS Line Pull. Port Trawl Winch: DYNACON, 2500m .681 fiber optic wire, auto-render. CTD Handling System: Caley Ocean Systems 6000m 0.322 cable, SWL 6700 LBS Main Crane: Palfinger 48000 (SWL 15,400 LBS @ 18 ft; 3090 LBS @ 67 ft) Stern A-Frame: SWL 20,000 LBS @ center overboarding sheave

> Clear Height: 20.4 ft Clear Width: 11.8 ft SWL 12,800 LBS P/S upper "T" extensions SWL 8000 LBS lower "T" extensions SWL 4000 LBS on inboard auxiliary padeyes

Crane "crutch" on starboard quarter for towing Forward Deployment Boom (SWL 1000 LBS)

DYNACON 10010 Portable Deck Winch, 700m of 0.498", 10 conductor cable. DEME Portable Deck Winch, 1000m of ¼", torque balanced wire. DEME Portable "Clean" Winch, 1000m of ¼" Kevlar. JENMAR Portable "Mooring" Deck Winch

LAB AND DECK SPACE:

Main Deck Aft: 1500 sqft Clear Rail Length (Starboard): 53 ft Dry Lab: 340 sqft Wet Lab: 260 sqft Vans: Two (2) 20-foot van locations P/S on main deck aft. Isotope Van with Hewlett-Packard LSC General-Purpose Van Cold and "Clean" vans available upon request

RETRACTABLE KEEL:

Three (3) 24" x 24" transducer bays for ship and science use. Changeable alongside.

Flush with keel:	2.9 m below mean water line
1.0 m down:	3.9 m below mean water line
2.0 m down:	4.9 m below mean water line

SHIP'S STANDARD INSTUMENTATION:

Sound Guard real time noise monitoring and recording program with hull mounted transducers.

Acoustic Doppler Current Profiler (ADCP): RDI "Workhorse" 600 kHz with a nominal range of 60 meters.

Surface Mapping System (SMS): The SMS records navigation, meteorological and sea surface data every 10 seconds.

CTD System: SeaBird Electronics 911 plus CTD, Rosette is a 12-bottle General Oceanic Model 1015, outfitted with an array of 10 liter bottles.

GMI MKII "Scanfish" Undulating Towed CTD with SeaBird Electronics 911 plus CTD installed

Knudsen 320 B/R Deep Water Echo Sounder (12 and 200 kHz). 3.5kH towed body available. RESON 8101, shallow water Multibeam Survey System

Profiling Light Meter (Biospherical) Ocean Instruments Box Corer (16" x 16") Smith MacIntyre Bottom Grab Liquid Scintillation Counter (in 20-foot van) Multicorer

Lab-Grade Water Purifier Gravity Corer (10 Foot) Deck Incubation Tables XBT System

"Clean" Sea Water Supply Available in Labs and Vans from dedicated science sea chest.

17-Foot Semi-Rigid Work Boat (SafeBoats) Modular Scientific Refrigerators and Freezers Scientific Bow Tower and Scientific Antenna Mounts on Main Mast

SCHEDULING:

The R/V *HUGH R. SHARP* is scheduled through the UNOLS process. Preliminary schedules for the next calendar year are normally drawn up in July. As the funding decisions for the various proposed projects become known the schedule is finalized. All investigators, regardless of which agency or institution is providing the funding, should submit a Ship Time Request through UNOLS as early as possible (www.unols.org). We are happy to accommodate additional cruises in the current year as the ship's schedule permits. We encourage all investigators to contact Marine Operations early in the planning stages of the project.

<u>CONTACT</u>: Jon Swallow, Director of Marine Operations Phone: (302) 645-4341 / (302) 396-8565; Fax: (302)645-4006; e-mail: jswallow@udel.edu

Principle Characteristics R/V HUGH R. SHARP

January 2014

Operating Area	Mid-Atlantic/Coastal
operating in the	Maine to Florida and the Gulf of Mexico
Length Overall	146'(44.5 m)
Length at Waterline	135,
Beam	32'
Draft	9.5'
Freeboard (aft deck)	5'
Maximum Antenna Height (SSB)	75'
International Tonnage (With two 20-foot	vans on deck) 495
Domestic Tonnage	256
Displacement Tonnage (Fully Loaded)	598
Cruising Speed	10 - 11 knots
Range (Average speed 7 knots, 10% reser	ve) 3500 nm
Endurance (Limiting Factor: Fuel)	~14 days
Propulsion Plant	Diesel-Electric
Main Propulsors:	Schottel Twin Z-drives (5-bladed, fixed pitch)
Bow Thruster:	Schottel Tunnel Thruster
Dynamic Positioning:	Simrad "Green" DP (rated "DPS-0")
US Coast Guard Inspection Status:	Uninspected
ABS Classed	*A1, Maltese Cross, AMS, Circle E
Load Line	Yes
Total Permanent Berths (2-person stateroo	oms) 22
Routine Crew (Including technician)	6-8
Routine Scientific	14
with Conference Ro	bom used as berth (2-person): 16
Acoustic Capabilities	Below ICES 209 limits at 8.0 knots
Stack Emissions	"Low" per EPA requirements
Bollard Pull	33,000 lbs
Routine Lifting/Towing	20,000 lbs
Science Payload	45 tons (32 long tonnes)
-	

Pioneer Array – Local Currents

Age of Mud – "Recent" (up to 10,000 years before present)

8 February 2016

ONR Seabed Characterization Experiment 2016 fro

from Bothner et al. JSP, 1981

Sediment Collection Strategy

- Mud cores, mud sand cores, sand cores
 vibracores
- Sediment water interface roughness
 - multi-corer for surficial sediment eval.
 - box corer for surficial sed. eval. and bulk sediment
 - sidescan imagery to assess fish- trawl impacts
- Grab samples w/box core -

Water Data and Measurements

CTD casts for

- Temperature
- Salinity

ADCP

• Currents

Mud Data

- Physical Property Data
 - Multi-sensor core logger (thru the liner evaluations underway)
 - Density
 - P-wave velocity (250 kHz)
 - Resisitivity
 - Magnetic susceptibility
 - Geotechnical Properties
 - Shear strength (laboratory)
 - Bearing Capacity (in situ)
- Sediment water interface roughness
 - Coring with multi-corer for surficial sediment evaluation
 - sidescan might be possible to assess fish- trawl impacts